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A B S T R A C T   

Under a theory of event representations that defines events as dynamic changes in objects across both time and 
space, as in the proposal of Intersecting Object Histories (Altmann & Ekves, 2019), the encoding of changes in 
state is a fundamental first step in building richer representations of events. In other words, there is an inherent 
dynamic that is captured by our knowledge of events. In the present study, we evaluated the degree to which this 
dynamic was inferable from just the linguistic signal, without access to visual, sensory, and embodied experience, 
using recurrent neural networks (RNNs). Recent literature exploring RNNs has largely focused on syntactic and 
semantic knowledge. We extend this domain of investigation to representations of events within RNNs. In three 
studies, we find preliminary evidence that RNNs capture, in their internal representations, the extent to which 
objects change states; for example, that chopping an onion changes the onion by more than just peeling the 
onion. Moreover, the temporal relationship between state changes is encoded to some extent. We found RNNs are 
sensitive to how chopping an onion and then weighing it, or first weighing it, entails the onion that is being 
weighed being in a different state depending on the adverb. Our final study explored what factors influence the 
propagation of these rudimentary event representations forward into subsequent sentences. We conclude that 
while there is much still to be learned about the abilities of RNNs (especially in respect of the extent to which 
they encode objects as specific tokens), we still do not know what are the equivalent representational dynamics 
in humans. That is, we take the perspective that the exploration of computational models points us to important 
questions about the nature of the human mind.   

1. Introduction 

Semantic space is all around us. Contemporary approaches to se
mantic memory, both its computer and human instantiations, have 
converged on the idea that semantic knowledge – the knowledge we 
have of the world around us and the things it contains – is organized in 
such a way as to encode similarity between concepts along multiple 
dimensions (e.g. Yee, Jones, & McRae, 2018). LSA (Landauer & Dumais, 
1997) and HAL (Lund & Burgess, 1996) were conceptually simple ap
proaches to generating such similarity spaces by computer. More 
recently, a number of additional approaches to generating semantic 
similarity spaces have evolved (see also Perconti & Plebe, 2020), 
including word2vec (Mikolov, Sutskever, Chen, Corrado, & Dean, 
2013), ELMo (Peters et al., 2018), BERT (Devlin, Chang, Lee, & Touta
nova, 2018), and ERNIE 2.0 (Sun et al., 2020). Each of these is based on 
the same underlying principle as govern LSA and HAL – their internal 

representation of a word, after learning, is a reflection of the contexts in 
which it occurred and the other words with which it co-occurred in those 
contexts (for now we gloss over the fact that some models reflect 
contextual co-occurrences as representations abstracted across individ
ual co-occurrences, while no longer encoding those individual co- 
occurrences – e.g. LSA, while other kinds of model can reflect contex
tual co-occurrences not only as abstracted representations but also as 
representations that maintain those individual co-occurrences – e.g. 
BERT). These models underpin almost all practical AI (Artificial Intel
ligence) approaches to NLP (natural language processing). And while 
the implementations vary in respect of the (deep learning) technologies 
they require, they all capture that same underlying principle – words 
that are experienced in similar contexts will have similar meanings and 
will thus be “closer” in semantic space than words occurring in more 
dissimilar contexts. However, there are important differences between 
these models: After learning, HAL, LSA, and word2vec return the same 
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representation for a word regardless of the actual context in which that 
word might subsequently occur. Contemporary models of semantic 
memory, on the other hand, propose that concepts are dynamic – the 
knowledge we access about any given concept depends on the context in 
which we access that knowledge – as defined, for example, by task de
mands, the broader situation in which the knowledge is accessed, or the 
idiosyncratic experience of the individual accessing the concept (e.g. 
Mirković & Altmann, 2019; Yee & Thompson-Schill, 2016). BERT, 
ELMo, and ERNIE 2.0 do return different word representations (word 
embeddings or vectors that constitute a mapping from word form to se
mantic space) depending on the context, but while they might provide 
useful insights into the information that a semantic space might ideally 
(or in practice) encode, they are not intended as, and nor are they, 
psychologically plausible models of (human) natural language process
ing (and specifically, natural language learning). 

Our focus here is not on semantic space per se but on representation 
(or its equivalent in a dynamical system – see below). Equally, our focus 
is not on lexical representation but on event representation. We shall 
describe a number of “simulations” with Recurrent Neural Networks 
(RNNs: similar to Elman’s Simple Recurrent Network (SRN: Elman, 
1990) but with more than one hidden layer) using Long Short-Term 
Memory units (LSTMS – see below). These essentially scale up the in
sights that Elman reported with respect to emergent representations of 
syntactic and semantic dependencies (Elman, 1990, 1993). Below, we 
apply some of these insights to learned representations of discourse and 
event dependencies, in networks with vocabularies in the tens of thou
sands. Our aim is not to build a better NLP device, but to better un
derstand the possible (and probable) encoding of event structure in the 
human mind. We return in the General Discussion to the relationship 
between RNNs and models such as ELMo (essentially a bidirectional 
RNN) and BERT. 

Below, we explore whether RNNs can develop sensitivity to the 
essential content of event representations (Studies 1 and 2 below), and 
the factors that may influence the propagation of both linguistically 
relevant and event relevant representations through time and context 
(Study 3). Our goal is not to evaluate whether RNNs or some other 
computational model are the model that best fits human behavior, but 
instead to try to understand how a possible mechanism for acquiring and 
processing event representations (recurrence) may relate to human 
behavior. For example, it may be the case that simple exposure to lan
guage and/or corresponding variation in the external world is sufficient 
to enable the emergence of event-relevant behaviors. At issue is: How? 
As outlined below, our results call for deeper understanding of how 
humans maintain (and change) linguistic representations while pro
cessing language, using similar techniques to the computational 
approach we outline below (in Study 3). 

1.1. Event representation 

We follow Altmann and Ekves (2019) in assuming that an event 
occurs when, minimally, an object changes state across time. On this 
approach, event representations are grounded in representations of 
object histories – the distinct states of an object across time. If a knife cuts 
through an onion, both the knife and the onion change state (albeit in 
different ways) – both the knife and the onion can be considered as 
trajectories through space and time whose intersection defines the event 
in respect of its participants and the changes in state they endure. Alt
mann and Ekves (2019) referred to this as the Intersecting Object His
tories account of event representation (the “IOH”). 

The IOH makes certain assumptions about the “computational sub
strate” that are based on properties of SRNs originally observed by 
Elman (and see Altmann & Mirkovic, 2009, for fuller discussion of these, 
and their relevance for sentence processing and event representation). 
The representation of a sentence – the linguistic realization of an event – 
is, in the SRN, a trajectory across time (afforded by recurrence through 
time), with different sentence types having different trajectories that 

nonetheless reflect similarity in structure. These trajectories also reflect 
the constraints acquired through learning on how, at each point in the 
trajectory, the trajectory may continue. We can therefore operationalize 
representation in Elman’s networks not simply as activation patterns 
across the hidden layers, but as constraints on which patterns can follow 
which other patterns. 

At issue for present purposes, is whether, and how, a system based on 
a recurrent architecture like the SRN might acquire event-relevant 
structure. At a minimum, and following the approach described above 
in relation to the IOH, we contend that it would need to track individual 
entities across sentences (similar in some respects to tracking entities 
across events or situations), and to track changes to those entities as a 
consequence of the events they participate in. 

1.2. Keeping track of discourse entities across sentence boundaries 

Early work on the influence of inter-sentential discourse de
pendencies on subsequent (linguistic) behaviors concerned the influence 
of context on ambiguity resolution (Tyler & Marslen-Wilson, 1977; 
Crain & Steedman, 1985; Altmann & Steedman, 1988). In one such 
study (Spivey-Knowlton, Trueswell, & Tanenhaus, 1993), the presence 
of more than one possible antecedent in an earlier sentence (e.g. “Two 
knights were attacking a dragon … the dragon killed one of the knights”) 
impacted on behaviors in a later sentence (e.g. beginning “The knight 
killed…”) – Altmann & Steedman’s Principle of Referential Support 
(Altmann & Steedman, 1988) predicted that a simple noun phrase which 
failed to pick out the intended referent (“The knight killed”) would be 
interpreted as the first noun phrase in a complex noun phrase con
struction (“The knight killed by the dragon fell to the ground with a thud”). 
Thus, depending on the referential context, syntactic ambiguities (“kil
led” as a main verb or as a past participle in a reduced relative clause) 
will be resolved one way or another. Crucially, this requires that infor
mation about entities introduced earlier on (the knights) is propagated 
forwards, from one sentence to the next (the basis for anaphoric de
pendencies across sentences). Could an RNN learn to use referential 
context to resolve syntactic ambiguities of this kind? 

To explore this, Davis and van Schijndel (2020) trained RNNs with 
LSTMs on an 80 million word subset of Wikipedia. SRNs have relatively 
short memories – long-distance dependencies are difficult for an SRN to 
learn because the hidden layer gets more and more information added to 
it on each successive time-step, and resolving information from the more 
distant past gets progressively harder (this is an over-simplification, but 
the intuition will suffice). LSTMs (Hochreiter & Schmidhuber, 1997) are 
units that overcome this by maintaining information across successive 
time-steps (they each have a dynamic memory that the network learns to 
modify, update, and draw from depending on the current word and the 
preceding context; they learn to balance the need to propagate infor
mation forward in time with the need to modify or even forget that in
formation). During training, the networks (each with different random 
initializations) had to predict each successive word in the corpus given 
the preceding words (Elman’s, 1990 prediction task). After training, 
each network was tested on the 16 actual stimuli from Spivey-Knowlton 
et al. (1993). Surprisal (Hale, 2001) was calculated at the phrase verb +
by (“killed by” in the example above). Surprisal was lower for the net
works when the preceding context contained two referents than when it 
contained one (“A knight and his squire were attacking a dragon”). Similar 
patterns were observed for main verb / reduced relative ambiguities 
when embedded not in referential contexts but in temporally supporting 
contexts (Trueswell & Tanenhaus, 1991). There were no such differ
ences in surprisal for networks trained on versions of the corpus in which 
the order of sentences was scrambled (thereby breaking any inter- 
sentential dependencies). It would appear, then, that RNNs with 
LSTMs can, at least to an extent (see below), track discourse entities 
across sentence boundaries and if necessary resolve referential ambi
guities in order to establish continuity of reference. Or at least, like 
humans, they behave as if this is what they do. 
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1.3. Representational content: tracking object states across events 

While impressive, the Davis and van Schijndel (2020) demonstration 
does not tell us the nature of the information that was propagated across 
the context-sentence pairings. Surprisal tells us about lexical expecta
tions, but it does not tell us about the internal representational content 
that the models propagated across each sentence and which presumably 
was the causal antecedent of these expectations. Encoding event repre
sentations requires the encoding not only of information about the en
tities themselves, but also about the states they pass through as events 
unfold. If a chef chops an onion and then weighs it, the thing being 
weighed is chopped. If the chef chops an onion but first weighs it, the 
thing being weighed is not chopped. In these cases, the object repre
sentation that propagates through the second clause (beginning “and 
then” or “but first”) should reflect the event-related changes to the onion 
that occurred in the first clause, depending on the temporal adverbial. 
Importantly, the state that the onion is in depends on which onion is 
referred to in the second clause: Chopping an onion and then weighing 
another onion means that the thing being weighed is (most likely) not a 
chopped onion. These different scenarios (both the real-world scenarios 
and their linguistic equivalents) exemplify what we mean by propa
gating a representation forward in time and reflecting whatever changes 
in state it undergoes as it transitions from one event (chopping) to 
another (weighing). Could an RNN spontaneously develop the appro
priate representational generalizations just through exposure to a large 
but otherwise arbitrarily chosen language corpus? 

Within a semantic similarity space typical of a model such as LSA, 
different objects (concepts) occupy different parts of the space. But they 
do not occupy single points, they occupy regions of space, with different 
points within the region reflecting different contextual dependencies 
associated with the different states of the object. The concept corre
sponding to the object “onion” is a region of space that includes yellow, 
white, and red onions, peeled onions, chopped onions, and fried onions 
(for related discussion see Solomon, Medaglia, & Thompson-Schill, 
2019). In principle, then, an RNN should be able to develop emergent 
categories (i.e. regions of space) that are structured in such a way as to 
capture the contextual dependencies between verbs such as “chop” and 
nouns such as “onion” that specify the distinct states (points in the space) 
that should be activated as a sentence such as “chop the onion” unfolds. 
More interesting is whether the network can then propagate the 
appropriate states (the appropriate representational content) across 
multiple sentences such that when “weigh the onion” is encountered later, 
the onion is still at that same point in space (albeit displaced slightly by 
the weighing). Importantly, distance within the region of space, between 
one point and another, could in principle reflect the degree of change 
that the object undergoes as it is displaced in the space (as modulated by 
the verb) – chopping the onion might displace that particular onion 
within the onion region by more than peeling the onion, reflecting more 
movement along the different featural dimensions along which the 
onion changes: The more change, the more movement, and the greater 
the distance. But how could a network learn, from linguistic input alone, 
the relevant featural dimensions along which objects change as they 
participate in events? While featural dimensions may emerge as an 
abstraction over the network’s hidden unit activations (c.f. Elman, 
1993), what the network is exposed to is more akin to affordances (e.g., 
Gibson, 1979; Glenberg, 1997), albeit in the linguistic domain. A sen
tence describing an event in which an onion is chopped is unlikely to be 
followed by a sentence in which that same onion is then peeled. So given 
that the RNNs are in the business of predicting upcoming input, event 
descriptions constrain what upcoming descriptions are afforded by the 
current input (reflecting the real world affordances that accompany 
events across time). Whether RNNs can develop sensitivity to affor
dances of these kinds is the basis for the studies to which we now turn. 

1.4. Preview of the studies and main results 

In all three studies we adopted the same computational architecture 
as in Davis and van Schijndel (2020). Study 1 was motivated by Hindy, 
Altmann, Kalenik, and Thompson-Schill (2012), who collected degree- 
of-change ratings for the sentence pairs that they used in an fMRI 
study of object-state change. Participants had been instructed to read 
sentences such as “The chef will chop the onion” or “The man will choose the 
bagel” and to rate on a 7-point scale by how much the thing that was 
acted upon in the sentence changed relative to how it had been before it 
was acted upon. Inspired by Representational Similarity Analyses (RSA, 
Kriegeskorte, Mur, & Bandettini, 2008) we compare the activation 
patterns across the hidden layers at the end of each sentence to the 
activation patterns that resulted from presenting to the networks the 
indefinite form of the noun referenced at the end of the sentence (e.g. 
“an onion” or “a bagel” for the two examples above). We found that the 
network’s unfolding representations (as indexed by the similarity to this 
baseline; see Supplemental Material A) correlated with the degree-of- 
change ratings in human participants asked to judge the exact same 
sentences. 

In Study 2 we asked whether the representation of the target object 
at the end of the sentence would propagate appropriately into a second 
sentence. We contrasted matched pairs of two-sentence sequences such 
as “The chef will chop the onion. Then, she will weigh the onion” and “The 
chef will chop the onion. First, she will weigh the onion”. In the THEN 
condition, the onion at the end of the second sentence is chopped – it 
should be dissimilar to a prototypical onion (indexed by the activation 
pattern due to just the word “onion”). In the FIRST condition, the onion 
at the end of the second sentence is being referenced in its prior 
unchopped state, and so should be more similar to a prototypical onion 
(relative to the observed similarity in the THEN condition). This is 
exactly what we found in our similarity analyses. And when we replaced 
“the onion” at the end of the second sentence in the THEN condition with 
“another onion”, the networks, like people (Solomon, Hindy, Altmann, & 
Thompson-Schill, 2015) treated this onion as a more prototypical onion. 

Whereas Study 2 explored how representations of the object under
going change propagate through the sentences, Study 3 explored how 
representations of the sentential subject likewise propagate. This more 
exploratory study used similarity through time to track the representa
tion of the sentential subject through to the end of the first sentence and 
into both the second and a third. We found, unsurprisingly, that the 
sentential subject does propagate through the sentences, but that its 
representation changes dynamically as a function of other input and its 
perturbation of the network’s activation state. We interpret these dy
namics as reflecting the extent to which the linguistic input places 
constraints on what states the network, as a dynamical system, can move 
into next. We now turn to the studies in detail before discussing the 
implications of these results for our understanding of both network, and 
human, behavior. 

2. Studies 

2.1. Neural networks 

We followed the architectural details in Davis and van Schijndel 
(2020). Specifically, we trained RNNs with LSTM hidden units using a 
language modeling objective (i.e. predicting the next word; as in Elman, 
1990). The models had two LSTM layers with 400 hidden units each, 
400-dimensional word embeddings, a dropout rate of 0.2 and batchsize 
20. They were trained for 40 epochs (with early stopping) using 
PyTorch. To disassociate effects of training data, we trained two sets of 
models on different data. The first (Wikipedia models; N = 25) was 
trained on approximately 103 million tokens of preprocessed Wikipedia 
text taken from verified higher quality articles (Wikitext-103; Merity, 
Xiong, Bradbury, & Socher, 2016). The other set of models (Web models; 
N = 25) was trained on approximately 100 million tokens of web data 

F. Davis and G.T.M. Altmann                                                                                                                                                                                                                



Cognition xxx (xxxx) xxx

4

taken from URL links in “higher quality” reddit posts, which crucially 
excluded all Wikipedia data (OpenWebTextCorpus; Gokaslan & Cohen, 
2019).1Sentence length was similar across the two corpora (18 and 17, 
respectively) although there was greater variance in the Web corpus 
(standard deviations: 15 and 22 respectively). Each of the models was 
initialized with a different set of connection weights. The vocabularies of 
the models were constrained to the top 50 K most frequent words in their 
respective training corpora. Words were represented using one-hot 
encodings (that is, 49,999 bits “off” and one bit “on”) for the input, 
and the output at each time step was a probability distribution for the 
next word ranging over the vocabulary.2 

2.2. Study 1: RNN encoding of object-state change 

The first study evaluates the internal representations of RNN lan
guage models while processing stimuli that describe a change in state of 
an object. “Knowledge” of events under IOH requires “knowledge” of 
object trajectories – a network that builds event representations should 
represent object affordances under different contexts, corresponding to 
the objects in a real-world event undergoing a change in state. Blended 
mangoes afford different interactions than do whole mangoes, with the 
blending causing changes in state that are accompanied by different sets 
of affordances. In principle, the consequences of changes in state on the 
affordances of the object (in its new state) should manifest in the lan
guage used to describe events and their consequences (changes in state 
would be accompanied by changes in what may unfold next). 

Using stimuli rated for degree-of-change (the amount an object was 
changed by an action), we evaluated whether RNNs encoded degree of 
change in a way that mapped onto human judgments. Sentences with 
corresponding human ratings were taken from Hindy et al. (2012) and 
pooled together with an additional set of stimuli and ratings developed 
by Prystauka, Ekves, and Altmann (in preparation). Across all our 
studies we selected the maximum number of stimuli from this original 
pool of 326 stimuli that satisfied the constraints of the study (e.g. that all 
words were known to the networks, that no verb + object combination 
appeared more than once, and depending on the study, that the stimuli 
either were paired (“minimum” vs “substantial” change) or were drawn 
from the same category (e.g. as in Study 2 below). The resulting 145 
stimulus pairs had the following structure: 

The chef will weigh the mango [minimal change implied by the verb] 
The chef will blend the mango [substantial change implied by the verb] 

Hindy et al. (2012) had used such pairs to show (among other effects) 
that the fMRI BOLD response elicited by such sentences correlated with 
degree-of-change ratings supplied by a separate group of participants. 
We excluded any stimulus pair that had any word in either sentence of 
the pair that was not contained within the models’ vocabularies. This 
left 136 sentence pairs for the Wikipedia models and 140 pairs for the 
Web models. Ratings had previously been collected online with each 
stimulus rated by a minimum of 25 participants. Because the Hindy et al. 
ratings were collected in 2011, and the Prystauka et al. ratings in 2018/ 
19, we recently collected new ratings for the entire set of stimuli (con
taining 326 stimuli from which the sentence pairs for this study were 
drawn) and calculated interrater reliability across the two sets of ratings. 
Reliability was extremely high (Pearson’s r = 0.95). For the data 
described below it did not matter whether we used the original ratings, 

the new ratings, or the average (we report statistics based on the 
average). Each pair of stimuli constituted a minimal pair that differed 
only in the verb, and consequently in the manner and degree of change 
that the entity in object position would undergo. The stimuli were 
designed so that one member of the pair would entail a substantial 
change to that entity and the other a minimal change (the degree-of- 
change ratings confirmed the minimal/substantial change designa
tion). We followed Hindy et al. (2012) in using this same paired stimulus 
structure, using the minimal change sentence as a baseline for assessing 
degree-of-change effects (both for the human ratings and for the model- 
derived measure which we describe next). 

To assess the internal representations of the RNNs, we calculated the 
similarity between the hidden representation of the final word in each 
sentence (taken from the final hidden layer of the RNN) and the hidden 
representation of a baseline (see Supplemental Material A). The baseline 
for each sentence was the indefinite form of the relevant object (e.g., “a 
mango” given “the chef will blend the mango”); the model’s hidden rep
resentation after “mango” thus corresponded to the encoding of the 
whole phrase (e.g., the model’s hidden representation of “mango” 
following “a”). For complex nouns such as “swimming pool” both nouns 
were included. To quantify similarity, we took the normalized cosine 
similarity (the Pearson correlation coefficient)3 of the two vectors cor
responding to (i) the hidden representation after each word and (ii) the 
hidden representation of the baseline. We used this correlation coeffi
cient as a measure of distance (i.e. similarity) in activation space. We 
predicted that RNNs with at least some knowledge of event structure (i. 
e. the consequences of an event for changes in the affordances/states of 
objects affected by that event) would have a graded degree of similarity 
between the baseline and the object. The baseline reflects the broadest 
set of affordances (i.e. the broadest prediction space: “A mango” licenses 
future washing, peeling, chopping, blending, freezing, etc) while 
changes in the trajectory of an object necessarily restrict possible 
affordances (“blending a mango” makes future washing, peeling, or 
chopping unlikely). Similarity between the baseline object and the ob
ject embedded in a particular event, then, corresponds to the extent to 
which that particular event restricts the affordances of the object, with 
lower similarity corresponding to greater restriction and higher simi
larity to less restriction (cf. “the chef blends the mango” vs. “the chef weighs 
the mango”). 

There are a number of different ways to probe the internal infor
mational content of a network, including diagnostic classifiers (e.g. 
Giulianelli, Harding, Mohnert, Hupkes, & Zuidema, 2018) and minimal 
description length probing (Voita & Titov, 2020). We chose to use a more 
direct analog of the question that was asked of the human participants: 
By how much is an object changed after an event relative to how it was 
before the event? Our measure of representational similarity asked by 
how much the hidden unit activation changes after a linguistic 
description of an event relative to how it would be after a generic 
descriptor. Classifiers can give a measure of change if interpreted 
probabilistically (i.e. the change in likelihood that a pattern will be 
classified as belonging to a particular category), but the distance be
tween two representations is necessarily influenced by the distances 
between the other representations on which the classifier has been 
trained. Cosine similarity is instead an absolute measure of similarity/ 
change. 

Statistical analyses of the relationship between model degree of 
change and human ratings were performed by calculating a difference 
score for each item pair (“substantial” change minus “minimal” change) 

1 This is an open source version of the training data in the popular language 
model GPT-2 (Radford et al., 2019). The code with which to further explore the 
models and recreate the results in the present study is available at (and the 
models linked from): https://github.com/forrestdavis/ExperimentNorming.  

2 The mean perplexity for the Wikipedia models on the validation data for 
Wikitext-103 was 40.6 with a standard deviation of 2.05, and for the Web 
models using a held out validation set of 10 million tokens of web data the 
mean perplexity was 64.53 with a standard deviation of 0.73. 

3 The Pearson correlation is equivalent to normalized cosine similarity, 
making the measure invariant to the addition of a constant. Qualitatively 
similar results hold when using unnormalized cosine similarity (which lacks 
this property). The particular implementation we used was corrcoef from 
numpy: https://numpy.org/doc/stable/reference/generated/numpy.corrcoef. 
html. 

F. Davis and G.T.M. Altmann                                                                                                                                                                                                                

https://github.com/forrestdavis/ExperimentNorming
https://numpy.org/doc/stable/reference/generated/numpy.corrcoef.html
https://numpy.org/doc/stable/reference/generated/numpy.corrcoef.html


Cognition xxx (xxxx) xxx

5

and for each variable (human ratings and model degree of change, 
averaged across the 25 models). This allowed us to maintain the pair
wise structure in the stimuli. We then computed the Pearson correlation 
coefficient r to quantify the relationship between the difference scores 
for the two variables, calculating the upper and lower 95% confidence 
intervals using the Monte Carlo method from Preacher (2012). For the 
Wikipedia models, r = − 0.20, p = .012 (95% CI: LL − 0.36, UL − 0.03); 
For the Web models, r = − 0.20, p = .018 (95% CI: LL − 0.36, UL − 0.03). 
We also used linear mixed effects models which confirmed the rela
tionship between the network similarity measure and the human ratings 
(see Supplemental Materials B). 

Greater similarity between the object and the baseline correlated 
with lower human degree-of-change ratings. In other words, the model 
representations seem to encode information about the magnitude of 
change the object is undergoing. There is significant variance left un
explained by the models internal representations, however. That is to be 
expected given that these models are trained only on text. The networks 
provide a unidimensional measure of representational change (based 
only on experiential knowledge of the language). The human raters, on 
the other hand, likely provided a multidimensional measure of such 
change, grounded in experiential knowledge of both linguistic and non- 
linguistic origin, with the latter spread across multiple sensorimotoric 
dimensions. Thus, neither of the corpora we used could encode object- 
state changes to the degree that humans experience them in their 
daily lives, but some corpora may encode state change more explicitly 
than others (cookery books may be a better source of object-state change 
information in respect of e.g. chopping, peeling, or blending, for 
example). Nonetheless, given the experiential limits imposed on our 
networks – being exposed only to linguistic input and that input being 
impoverished in respect of conveying the full (real world) range of 
object-state change– it is all the more remarkable that RNNs encode 
event-relevant structure to the extent that they do. We return to the 
challenges that impoverished experience presents, both for the networks 
and for understanding the nature of the network’s internal representa
tions, in the general discussion below. 

2.3. Study 2: propagating event participants forwards, and backwards, in 
time 

Study 1 demonstrated that our RNNs’ encoding of discourse entities 
was modulated by the verb preceding that entity. This modulation 
correlated with human ratings of the degree to which those objects, in 
real life settings, would be judged to change state as a consequence of 
the event described by the sentence. Having demonstrated this sensi
tivity to event-relevant content, in this second study we ask whether 
RNNs can propagate the appropriate content into a subsequent sentence. 
Specifically, a sentence that refers to a second event following or pre
ceding, in event time, the event described in the first sentence. Consider 
the following.  

The chef will chop the onion. Then, she will weigh the onion 
[same token, future event] 
The chef will chop the onion. First, she will weigh the onion 
[same token, past event] 

In principle, the onion that is weighed in the “Then” condition should 
be less similar to a generic onion (it has been chopped) than the onion 
that is weighed in the “First” condition, which should be more similar to 
a generic onion (it has not yet been chopped). We followed Solomon 
et al. (2015) in adding another condition: 

The chef will chop the onion. Then, she will weigh another onion 
[different token, future event] 
The chef will chop the onion. First, she will weigh another onion 
[different token, past event] 

Solomon et al. (2015) found in an fMRI experiment that sentences 

with “another onion” patterned as if this other onion had not undergone 
any change (i.e. it was a newly instantiated generic onion). While we 
anticipate that “another onion” should be more like a generic onion than 
“the onion” after “Then, …”. Less clear is how “another onion” will pattern 
(in respect of its similarity to “an onion”) after “First, …”. In both cases, 
we would expect some representation of the original chopped onion to 
propagate forwards, because the pragmatics of such constructions 
(manifested in their usage) suggests that the chopped onion will be 
referred to again in the future (otherwise it would not have been 
mentioned at all). Most likely, we would see greater dissimilarity in the 
“Then” condition simply because, as event time moves forward, there is 
probably a greater likelihood that the chopped onion will come back 
into (linguistic) play, in which case the RNN may increase its activation, 
thereby decreasing the similarity of its internal representations to “an 
onion”. We return below to discussion of the network’s encoding of 
distinct tokens. 

We selected 150 two-sentence stimuli from the original set described 
above. All stimuli included verbs that had previously been designated by 
human participants as causing “substantial change” (see Study 1). We 
selected “substantial change” items for this study so as to better explore 
the effects of the “Then/First” alternation (for verbs entailing minimal 
change, the representation of the changed entity would be little changed 
from before or after the event that changed it, and using such verbs 
would have lacked sensitivity). As with Study 1, we calculated the 
similarity between the hidden representation of the final word (this time 
at the end of the second sentence) and the baseline for each sentence 
–the indefinite form of the relevant object (e.g., “an onion” for the ex
amples above). 

We performed a 2 (temporal adverb) x 2 (determiner) within- 
subjects ANOVA (every network was given every item in all 4 condi
tions), followed by planned comparisons of the contrast between 
“then…the” and “first…the”. For each analysis, we treated networks as 
participants and report both by-network (F1) and by-item (F2) analyses. 
Table 1 shows the similarity values (Pearson’s r) in each of the 4 con
ditions for both the Wikipedia and Web models. 

For the Wikipedia models there was a main effect of adverb (“then” 
vs. “first”: F1(1,24) = 22.4, p < .0001; F2(1149) = 43.0, p < .0001) and 
of determiner “the” vs. “another”: F1(1,24) = 1379.6, p < .0001; F2 
(1149) = 1333.5, p = .000 but no interaction between the two (F1(1,24 
= 1.8, p = .187; F2(1149) < 1). Similarly for the Web models (“then” vs. 
“first”: F1(1,24) = 49.1, p < .0001; F2(1149) = 20.1, p < .0001; “the” vs. 
“another”: F1(1,24) = 1652.3, p < .0001; F2(1149) = 1025.4, p <
.0001) although for these models there was a marginal interaction be
tween adverb and determiner (F1(1,24) = 7.3, p = .012; F2(1149) = 1.0, 
p = .316). For both sets of models, the “then…the” condition was less 
similar to baseline than the “first…the” condition (Wikipedia: F1(1,24) 
= 22.0, p < .0001; F2(1149) = 306.4, p < .0001; Web: F1(1,24) = 48.1, 
p < .0001; F2(1149) = 86.9, p < .0001). 

If an onion was chopped but first it was weighed, reference to the 
onion that was weighed engendered a representation that was more 
similar to a generic onion than if the onion had been chopped and then it 
had been weighed. The networks, regardless of which corpus they had 
been trained on, were sensitive to the temporal ordering of the events 
and the consequences of this ordering for the state of the onion 
(although most likely the distinct states of the onion are encoded in 

Table 1 
Representational similarity analysis comparing hidden unit activations at the 
end of the second sentence to the baseline. Values are Pearson’s r (higher value 
means more similar), and for networks (n = 25) trained either on the Wikipedia 
or the Web corpus.   

Wikipedia Web 

Then… First… Then… First… 

the… 0.530 0.535 0.545 0.550 
another… 0.700 0.706 0.670 0.675  
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respect of the likely consequences of an event for what events can follow 
– see above). Equally, if an onion was chopped but then another onion 
was weighed, that onion was again more similar to a generic onion (i.e. 
more similar to the baseline “an onion”) than if it was the onion that was 
weighed. We return in the general discussion for the implications of such 
a result for whether, or how, the RNNs can be considered to have 
encoded the onion that was chopped as a specific token onion with 
“another onion” encoded as a different token. 

Perhaps surprisingly, the same “then”/”first” pattern was observed 
for “another onion” as was observed for “the onion”. Why should “then… 
another onion” be more dissimilar to the (presumed) generic than is 
“first…another onion”? They are both new tokens, and in some sense 
should be identical regardless of the temporal context in which they are 
introduced. However, and as we shall discuss further below, the repre
sentations we are probing at the end of the second sentence are not just 
those associated with reference to the onion – they reflect the entire 
representational state of the network (operationalized as the second 
hidden layer). This state will include representational content pertaining 
to the onion at the end of this second sentence but also pertaining to the 
chef from the first sentence (we explore this further in Study 3 below), 
and the onion from the first sentence. So if there are two instances of 
onion – i.e. two onion tokens – the representation at the end of the 
second sentence will contain information about the new token (intro
duced by “another onion”) and the original token (introduced in that first 
sentence, and whose state/affordances reflect having been chopped). 
We speculate that in the case of “first…” the state of the original token is 
“suppressed” (the affordances of a chopped onion no longer apply and 
are less active) meaning that the composite pattern will be more similar 
to a generic onion than after “then…” when the affordances of a chopped 
onion do still apply. Hence the same effect of temporal adverb on 
“another onion” as on “the onion”. Again, we return below to this issue of 
how and in what way the RNN encodes tokens. 

If “another onion” puts the network into a state where it represents 
both this new token onion and the original token, would the network be 
able to distinguish between these two tokens? We believe that this may 
be a limitation of the networks as currently trained. It has been observed 
that there is a general recency bias in RNN language models (e.g., Davis 
& van Schijndel, 2020; Ravfogel, Goldberg, & Linzen, 2019). In our own 
testing, we have noted a recency bias for stimuli like “The chef has a small 
onion and a big onion. He chopped the small onion. Then, he chopped the ...”, 
where rather than predicting “big” (as pragmatic reasoning would sug
gest) both the Wikipedia and Web-trained models had a greater pref
erence for “small”. But their preferences were modulated by training 
corpus: The Wikipedia networks preferred “big” over the pragmatically 
anomalous continuation “banana”, whereas the Web networks surpris
ingly preferred “banana” over “big”. In the real world, of course, where 
language meets visual experience, that experience is not subject to the 
same recency biases that are typical of language. For example, as our 
eyes move around a scene, we tend not to revisit the most recently 
viewed entities. And when navigating somewhere and back again, we 
revisit the earlier location, not the more recent location. We thus believe 
that there are attentional factors in our experience of the external world 
which essentially work against the recency biases that pervade our 
experience of the linguistic world. We cannot, at this time, tell whether 
the recency bias we find in our RNNs is due to their specific training (i.e. 
reflecting a general bias in the language they are exposed to) or due to an 
architectural limitation that could be overcome with an attention 
component (Bahdanau, Cho, & Bengio, 2014; Vaswani et al., 2017) 
operating either over the language or over a different but parallel 
domain of experience - c.f. the relationship between linguistic and non- 
linguistic domains of variation envisaged in Altmann and Mirkovic 
(2009). It is noteworthy that the language model GPT-2 (Radford et al., 
2019), a transformer model with an attention mechanism, does not 
display a recency preference with these kinds of stimuli, but predicts the 
pragmatically expected continuations. On the other hand, it appears to 
fail with “The chef has a small onion and a big onion. He chopped the small 

orange. Then, he chopped the ...”, where it exhibits a substantial prefer
ence for the continuation “big” over “small” (suggesting a structural 
preference over content). The RNNs do not do any better – they prefer 
the more recent “small” over “big”, regardless of the corpus on which 
they were trained, although the web-trained networks continue to prefer 
“banana” over “big”. 

These last (informal) data, contrasting RNNs with GPT-2, highlight 
an issue that is central to the current series of studies: RNNs exhibit 
representational properties that we believe a priori to be necessary 
precursors to the behaviors we are targeting. But representational space is 
not the same as word space. The representational similarity analyses 
reported for Studies 1 and 2 operate over representational space, 
whereas the behaviors just described (with big and small onions) reflect 
operations over word space. GPT-2 exhibits the right behaviors in word 
space (insofar as we have started to explore them) but their correlates in 
representational space, at least in respect of object state affordances and 
trajectories through time, are relatively opaque. We return to GPT-2 in 
the General Discussion. 

A final word, in this section, on the distinction between representation 
and behavior. We can think of representations in RNNs as corresponding 
to the regions of an abstract multi-dimensional (similarity) space that 
the system can move into as a function of where it has come from (c.f. 
our earlier description of representation in an SRN as constraints on 
which activation patterns can follow which other activation patterns). 
Behavior is what the system does when it actually traverses that space. 
Thus, we refer to network behavior not simply when, for example, 
describing its predictions in word space, but also when using represen
tational similarity analyses to probe where the network is, in or after, its 
trajectory through that representational space. Representation and 
behavior are thus intimately intertwined inasmuch as tracing a trajec
tory – traversing the space – entails passing through different repre
sentational states. 

2.4. Study 3: propagation dynamics 

In the previous studies, we investigated the degree to which RNNs 
encode object affordances in their representations both broadly and for 
specific tokens. In Study 3, we explored what effect emergent event 
representations in RNNs have on other participants in the event. In 
particular, we ask what happens to the representation of the sentential 
subject as the network encodes events across multiple sentences? Some 
representation of the subject must propagate forwards (a consequence of 
recurrence, and a desirable property of any model of human sentence 
processing), but what modulates the strength of that propagation? Ac
cording to the IOH, the history of an object includes its intersections 
with other objects – in effect, that object becomes dynamically associ
ated with the objects with which it has intersected (meaning that those 
associations are context-specific, depending on where in time and space 
the intersection occurred). But such associations can form only to the 
extent that the representation of one propagates strongly enough onto 
the representation of the other. If prior input has very little effect on the 
state of the system (i.e. it perturbs it less), the “trace” of that input will be 
weaker than that of an input that has greater effect on the state of the 
system. But similarly, if something subsequent to that input perturbs the 
system more, it may “mask” the impact of that earlier input. We might 
conceptualize this idea with the following analogy: a bigger splash will 
cause ripples to travel further. But the ripples due to a smaller splash 
may be overwhelmed by those caused by a subsequent bigger splash. In 
this more exploratory study, we use entropy to quantify the splash. 

Entropy is operationalized in our RNNs as the amount of order or 
disorder in the predictions that the RNN makes at each point in time. If 
only a small number of words are predicted at the next time-step, the 
system is in a state of low entropy compared to one in which many words 
are predicted. And if many words are predicted but one is predicted by 
very much more than the others, then that too reflects a state of low 
entropy. The more constraining the context, the more the system is 
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perturbed (the less random the activation state of the system becomes), 
and the lower the entropy. In Study 3 we probed the entropy at the offset 
of the subject + verb sequence in the first sentence of a 3-sentence 
sequence such as 

The farmer will shear the sheep. Then, he will feed the sheep. Then, he will 
think about the sheep. 

The entropy at the offset of “shear” reflects the impact of the com
bination of that verb with its subject on what the network will predict 
might come next (henceforth, although we shall be referring to the en
tropy at that first verb, we shall simply refer to it as “the entropy”). A 
verb like “shear” is more constraining than, for example, “select”, with a 
corresponding reduction in entropy at its offset. But while farmers might 
constrain the kinds of event that might be referred to subsequently, a 
verb like “shear” restricts the lexical space much more considerably. 
Thus, low entropy at the offset of “shear” most likely reflects the “rip
ples” of “shear” more than it does the ripples of “farmer” (although of 
course, it reflects the combination of the farmer and the shearing). But 
does the combined predictive strength of “the farmer will shear” (indi
cated by low entropy at the offset of this sequence) aid in the propa
gation of some representation of the farmer downstream and into the 
subsequent sentences, or will it hinder it? In other words, how does 
entropy – a proxy for the state of perturbation of the network – impact, if 
at all, on the extent to which the farmer is reflected in the hidden state 
representations at each instance of “the sheep”? 

We selected 232 two-sentence stimuli from the original set described 
above with half drawn from the “substantial change” category and half 
from the “minimal change” category. We added the same third sentence 
frame to all the stimuli: “Then, <pronoun> will think about <object from 
1stsentence>. This was in part to ensure all additional words were known 
to the networks and in part to ensure that any effects at the end of this 3rd 

sentence could not be due to variability across items at this 3rd sentence. 
All words contained within the entire stimulus set were “known” to all 
the networks (the 25 Wikipedia and the 25 Web networks). There was no 
difference in entropy across the minimal and substantial change verbs 
(means: 5.95 and 5.94 respectively, F < 1.0). We included both sub
stantial and minimal change verbs so as to include a spread of degree-of- 
change (entropy did not correlate with degree-of-change; r = 0.05, t <
1.0). 

Fig. 1 shows the similarity of the activation pattern at each word to 
the activation pattern due to the baseline “the farmer” – it illustrates the 
degree to which some representation of the farmer is “contained” within 
the hidden state representation at each point in the sentences, and shows 
how a representation of that first sentential subject propagates forward 
from the beginning of the first sentence to the end of the last. We 
computed the Pearson correlation between entropy and similarity of the 
hidden unit activations to “the farmer” at the offset of each mention of 
“the sheep”. There was a statistically significant and positive correlation 
at all three mentions. For the Wikipedia networks – Sentence 1: r = 0.22, 
p = .001 (95% CI: LL 0.09, UL 0.34); Sentence 2: r = 0.15, p = .043 (95% 
CI: LL 0.002, UL 0.26); Sentence 3: r = 0.15, p = .021 (95% CI: LL 0.02, 

UL 0.27). For the Web networks – Sentence 1: r = 0.18, p = .006 (95% 
CI: LL 0.05, UL 0.30); Sentence 2: r = 0.15, p = .020 (95% CI: LL 0.03, UL 
0.27); Sentence 3: r = 0.18, p = .007 (95% CI: LL 0.05, UL 0.30). See 
Supplemental Material C for confirmation with linear mixed effects 
models. In contrast, we found no correlations between entropy and 
subject similarity at the pronouns, suggesting that our data are not 
simply a reflection of high subject similarity. We did find similar in
fluences of the entropy when the object in the second sentence was 
changed from “the sheep” to “another sheep”, although similarity to “the 
farmer” was significantly reduced. 

The data from this study suggest that dynamics matter – that is, that 
the perturbation of the network, indexed here by the state of entropy 
after the combination of the subject and verb in the first sentence, does 
impact on the activation profile of representations in subsequent sen
tences. The lower the entropy, the less similar was the representation at 
“the sheep” to “the farmer”. That is, the lower the entropy was, the less 
clearly the sentential subject propagated forwards through to both the 
end of that first sentence and subsequently into the following sentences. 
One interpretation of this result is that we are seeing the effects of a 
bigger splash on an earlier splash – the perturbation due to a strongly 
constraining verb masking the lesser perturbation due to the sentential 
subject. This may in part reflect the centrality of the predicate, in En
glish, in respect of constraining the participants’ roles in the sentence (i. 
e. in defining the “intersections” as described in the IOH). In languages 
such as Japanese, where the verb typically comes at the end of the 
sentence, we might expect to find equivalent effects at points within the 
sentence that are similarly constraining (i.e. at certain post-nominal 
particles that function as case markers; see Kamide, Altmann, & Hay
wood, 2003, for the behavioral manifestation of such constraints on 
incremental processing and prediction in Japanese). 

Regardless of interpretation, the actual significance of these data is 
not in respect of what we might hope to know about networks, but in 
respect of what we do not know about the human brain: We do not know 
what the equivalent dynamic is in the human brain. Might recall of earlier 
material in a sentence similarly depend on entropy? Would participants 
better recall the farmer in a subsequent cued-recall task (cued with “the 
sheep”) if he had selected a sheep rather than sheared a sheep? Could we 
use RSA in a neuroimaging task to generate a continuous measure of 
“representational integrity” as we did, in computational terms, for 
Fig. 1? Here, we are equating representational similarity with repre
sentational integrity – the more similar the representation after “sheep” to 
the representation after “farmer”, the greater the integrity of the repre
sentation (i.e. the less interference during propagation, or the stronger 
the association that formed between “farmer” and “sheep” when they 
first co-occurred in that first sentence). These are all questions for future 
studies. The point, simply, is that consideration of network dynamics 
lends itself naturally to consideration of brain dynamics. And a theme 
that will recur below is that, when it comes to such dynamics, we do not 
know even what the target behavior is in the human brain that we 
should be hoping to model. 

Fig. 1. Similarity of the activation state of the hidden units at each word position to the activation state of those units after experiencing just the subject of the 
sentence (“the farmer”). 
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3. General discussion 

According to the IOH (Altmann & Ekves, 2019), a hallmark of event 
representation is the encoding of object-state change across time. In 
Study 1, we demonstrated that item-wise differences in similarity 
computed from the RNNs’ internal representations correlated with item- 
wise differences in human ratings of the degree to which an object is 
changed by an event it participates in. Study 1 thus showed that the 
RNNs developed an emergent state space that is similar, at least along 
some limited dimensions, to the representational space encoded by 
human participants. Study 2 extended these state change findings to 
show that the representation of onion introduced in the first sentence 
(“The chef chopped an onion”) propagated into the second sentence 
(“Then/First, she smelled the onion”). However, this propagation was 
modulated by the temporal adverb; when the onion was referenced at a 
point in time after the chopping, it was less similar to the representation 
engendered by the phrase “an onion” (the generic baseline) than when it 
was referenced at a point in time before the chopping. 

A related hallmark of event representation – related, that is, to the 
encoding of object-state change – is the distinction encoded in such 
representations of object tokens versus object types; it is not just any 
onion that is being smelled, it is the same individual onion (the same 
token) as had been chopped. The RNNs in Study 2 were sensitive to this 
distinction between the same onion and another onion: After the 
chopping, smelling “another onion” engendered a representation that 
was more similar to a generic onion than did smelling “the onion”. The 
networks thus appear to distinguish between cases when reference is to 
the same token and cases when reference is to a different token of the 
same type. Nonetheless, we do not have direct access to the networks’ 
actual representations (as distinct from the raw activation values across 
the networks’ hidden units) – we are no more able to determine whether 
the network in fact encodes objects as tokens than we are able to 
determine whether a human participant encodes objects as tokens – we 
return below to why there is no such direct access, and why, nonetheless, 
we believe that the RNNs did instantiate tokens. 

The behaviors observed in Studies 1 and 2 address just one aspect of 
an event representation; namely, object-state change. Study 3 was more 
exploratory, examining factors that might mediate the extent to which 
the object acted upon (e.g. the onion) becomes representationally 
associated with the object that acted upon it (the chef). Our interest here 
was in how properties of the verb (e.g., how constraining the verb was in 
respect of its predictive informativeness – how much it perturbed the 
system) might impact on the network’s ability to propagate and re- 
activate those representations as appropriate. We found that the 
greater the perturbation at the verb, the harder it was for the repre
sentations associated with the subject to propagate forwards and make 
contact with the representations due to the object (the onion). 

Our longer-term goal in running this study was to raise an issue not 
about network dynamics but about brain dynamics: Would we see the 
same propagation dynamics if we were to probe the equivalent in human 
participants? For example, perhaps the effects we observed at the final 
word in the 3-sentence sequence were unrelated to the content of the 
word “onion” in that position – i.e. unrelated to that object’s history. 
Would this be a “good” thing, or a “bad” thing? We cannot know until 
equivalent analyses of the equivalent dynamic are carried out in human 
participants (e.g. using neuroimaging data and RSA through time – see e. 
g. Choi, Marslen-Wilson, Lyu, Randall, & Tyler, 2020). Perhaps they 
would show the same dependence on the entropy of the verb in the first 
sentence that we observed in our networks. Without knowing what the 
human equivalent dynamic is, we cannot know which is the target 
behavior we should hope to explain. If nothing else, our RNNs have 
opened the door to asking such questions and to probing human 
behavior in new ways that would inform the nature of the dynamical 
properties of the brain’s encoding of the unfolding language. 

3.1. Event representation and the sparsity of the input 

These data are by no means exhaustive – they are just a first step in 
our understanding of how RNNs can or might encode event represen
tations and their corresponding dependencies, and as just mentioned, 
they open the door to future investigations of propagation dynamics in 
the human case. But while much further investigation is warranted, the 
current data, limited as they are, do nonetheless beg the question: What 
was the basis for our RNNs’ abilities? Surprisingly, this is not so 
straightforward a question. Even knowing what the RRN can do is far 
from straightforward; on what basis do we evaluate how the network 
works? Can we even evaluate what, in the corpus, led to the networks’ 
behaviors? One very significant challenge is captured by the following 
statistic: The word sequence “chop the onion” appears just once in the 
whole of Wikipedia. And “weigh the onion” appears … not at all. In fact, 
for the Wikipedia corpus, 94% of the 290 verb+object combinations did 
not appear in the corpus on which the networks were trained; for the 
WEB corpus this figure was 89%. The extent of this sparsity within the 
corpus poses a major challenge for understanding the causal mecha
nisms through which the networks acquired, encoded, and deployed the 
knowledge that contributed to their event-relevant performance. In the 
context of such sparsity, how could the networks, even in principle, learn 
that chopping an onion changes that onion by more than weighing it? 

The answer to this last question is related to the question “What do 
categories, as encoded in semantic memory, offer the cognitive system?” The 
traditional answer is: “generalization”. In the present context this means 
that it should not matter that “chop the onion” is effectively absent from 
the corpus. What matters is that “chop” and “onion” appear separately 
many thousands of times and, perhaps critically, that “onion” frequently 
co-occurs with “garlic”, “carrot”, “mushroom”, and other choppable 
things. So long as nearby semantic space encodes something as affording 
chopping, and so long as that space, or the semantic space associated 
with chopping4, encodes the class of state change that constitutes being 
chopped (e.g. the class of change that is common across the chopping of 
onions, carrots, logs, text, etc), or encodes a space of consequent actions, 
the novel combination of chopping and onions can be interpreted. Thus, 
“onion” would, in lieu of actual experience, inherit properties of other 
objects in nearby semantic space. This inheritance is due to constraints 
on where (in state space) the system can move next as a function of were 
(in state space) it has come from. These constraints do not reflect simple 
context-independent co-occurrence statistics (c.f. LSA) but rather reflect 
accumulated experience of context-dependent trajectories through state 
space (c.f. SRNs). Hence, if sparsity in the corpus is accompanied by an 
appropriate category structure across the semantic space (defined 
through proximity in the similarity space), novel combinations of verbs 
and objects, or in real-world terms, of actions and participants in those 
actions, can be interpreted through such inheritance. 

3.2. Trajectories and their propagation through time 

Novel combinations of verbs and the discourse entities that partici
pate in the actions denoted by those verbs constitute novel trajectories 
through state space. However, an unintended interpretation of such a 
statement is that these trajectories are independently realized within the 
networks’ internal states, like veins running through the network’s 
body, albeit across time. However, in the recurrent architecture we 
envisaged in Altmann and Ekves (2019), and certainly within the RNNs 
employed here, there are no such independently realizable trajectories 
(beyond some theoretical abstraction). Rather, the entire state of the 

4 According to the IOH, representations of actions are emergent properties of 
the representational system; to the extent that classes of objects change states in 
analogous ways, the analogy can emerge as a category across those changed 
states. Use of the same label, e.g. “chop”, to refer to these analogous changes 
would encourage such emergence. 
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representational substrate (which may or may not coincide with the 
entire network) is in flux; an individual trajectory is the manifestation in 
that substrate of information that evolves through time, distributed 
across the entire representational substrate both in network space 
(hidden unit activation space) and time (c.f. “neural manifolds”, 
although these are generally associated with subsets of the entire neural 
substrate; e.g. Gallego et al., 2018). These are not veins that can be 
stripped from the network’s body. And this makes a causal interpreta
tion of the network’s behavior (i.e. what internal “representations” drive 
those behaviors, and what from their experience drove the emergence of 
those representations) particularly challenging (see e.g. Tabor, Cho, & 
Szkudlarek, 2013), and references contained therein, for related dis
cussion). How, for example, can we possibly know if the network has a 
representation corresponding to a specific token object? But equally, and 
in the scientifically-mandated absence of intuition, how can we possibly 
know if a human participant has a representation corresponding to a 
specific token object? What behavior would we expect to observe under 
what conditions? And imagine that our RNNs exhibited the equivalent 
behavior… should we interpret the RNN’s behavior differently from 
how we interpret the human participant’s? The answer to this last 
question is, of course, “no”. Or rather, “no” is the answer to the related 
question “should we interpret the human participant’s behavior differ
ently from how we interpret the network’s?” 

The key behavior that we believe underlies our RNNs’ ability to 
capture key aspects of event representation is the propagation and 
modification of object representations forwards in time (that is, for
wards through the sentence – we established in Study 2 that the net
works exhibited some sensitivity to the linguistic time travel afforded by 
temporal adverbs). This directionality matters. It is common to assume 
that, in the case of referential dependencies, a subsequent anaphor or 
referring expression refers back in time to some specific token discourse 
entity introduced previously. Equally, it is common to assume, in the 
terms of a recurrent architecture, that the current state of the network 
contains echoes of its past states, and that the current input can cue 
retrieval of information from those past states (c.f. cue-based retrieval 
approaches to sentence processing; e.g. Lewis, Vasishth, & Van Dyke, 
2006). An alternative assumption is that in cases of anaphora or other 
referential dependency, the antecedents (the knights from the Davis and 
van Schijndel (2020) study, or the chef/farmer from our own studies 
reported here) are propagated forward across the sentences such that the 
antecedent to a subsequent expression such as “the chef” or “she” is not 
an antecedent at all (in its literal sense), but a concurrent component of 
the network’s internal representation. In discussing the likely workings 
of our networks, we use the concept of propagation forward in time, 
rather than retrieval from backwards in time, as this more accurately 
reflects the underlying computational mechanism (as instantiated in the 
LSTMs). It is not the case that, for example, a “representation” is put in a 
metaphorical box where it remains, static, until retrieved at some later 
time, or that the representation is carried forward in time on the crest of 
a predictive wave, remaining unchanged for the duration of the wave on 
which it travels (c.f. models of human memory based on cue-based 
retrieval, which argue that what is retrieved is reconstructed from the 
context at the time of retrieval and that, in essence, it is impossible to 
access/retrieve the same representation twice; e.g. Roediger, 2001). As 
representations carry forward, they change with the network as the 
network itself changes state dynamically through time. Whatever rep
resentation is initially activated on-the-fly changes as more of the sen
tence accrues. The chopping, the onion, the smelling… these each 
impact on the chef as each sentence unfolds word-by-word. 

While it is an inherent property of recurrence in the RNN that in
formation can propagate forward in time, how did our RNNs learn to 
propagate the right information forward (right in the sense of enabling 
the observed behaviors), modulating it to reflect the exigencies of the 
(described) event? RNNs are constrained to be forward looking – they 
predict upcoming input on the basis of prior input, with no access to the 
right context (i.e. the input that would come after the target item to be 

predicted). This is distinct from models such as word2vec (Mikolov 
et al., 2013), BERT (Devlin et al., 2018) or ELMo (Peters et al., 2018). 
For many instances of syntactic or sense disambiguation, the right 
context is completely disambiguating (cf. “The knight killed by the dragon 
fell to the ground” vs. “The knight killed the dragon which fell to the ground” 
or “I went to the bank to get my money” vs. “I went to the bank of the river”). 
But without access to the right context, learning to propagate from the 
left, using e.g. referential dependencies to inform the resolution of am
biguities to the right, can contribute to reducing the prediction error 
through correctly predicting how an ambiguity should resolve, or 
through correctly predicting what kinds of actions might be referred to 
next given the new state of a propagated object. We conjecture that, to 
the extent that the left context can contribute to reducing error during 
training, the propagation of object representations as trajectories 
through time and object-state space is an emergent feature of forwards 
prediction (left-to-right predictive contingencies) in a recurrent or 
equivalent architecture. 

Although this has still to be systematically tested (see Ettinger, 2020, 
for evidence suggesting that BERT lacks event knowledge; and Tran, 
Bisazza, & Monz, 2018, and Abnar, Dehghani, & Zuidema, 2020, for 
further elucidation of the role of recurrence within NLP), we did briefly 
explore whether the results reported here (Study 1) are unique to the 
RNN’s architecture. Models such as word2vec, which return the same 
word embedding regardless of context, will not be able to model the 
contextual dependencies on which our data rest. But what of BERT, 
ELMo, or the more recent GPT-2 (Radford et al., 2019)? We in fact tested 
all three of these models (different pre-trained and open-sourced in
stantiations that differed in training set and parameters; see Supple
mental Materials D) and found that each could model the data from 
Study 1 – that is, they had developed hidden-layer representations that, 
across the range of sentences used in that study, predicted human ratings 
of change in state. We used seven variants of BERT, each with 12 hidden 
layers. Treating each as a participant (i.e. for each item, averaging across 
all seven models – equivalent to our analytic procedure in Study 1 
above), the first hidden layer was sensitive to degree-of-change (i.e. a 
statistically significant correlation to the human ratings; r = − 0.16, p =
.049, 95% CI: LL − 0.32, UL − 0.001). We had just a single instantiation 
of GPT-2 and therefore analyzed each of its 48 hidden layers separately. 
Six of these were sensitive to degree-of-change (i.e. we found statisti
cally significant correlations to the human ratings); − 0.21 < r < − 0.17). 
We note, however, that these statistical analyses of BERT and GPT-2 
would not reach statistical significance if corrected for multiple com
parisons (reflecting multiple correlations, at each of their 12 and 48 
layers respectively). The four different instantiations of ELMo, treated as 
participants, were also sensitive to degree-of-change (r = − 0.18, p =
.033, 95% CI: LL − 0.33, UL − 0.01). None of this is surprising, given our 
original premise that degree-of-change manifests in the language models 
as differences in linguistic affordances – i.e. differences in the contexts 
that can follow the critical event descriptions. It is noteworthy that both 
BERT and ELMo take into account the context following a word/sen
tence when developing their internal embeddings – it would be sur
prising if these models were not sensitive to rightwards contextual 
contingencies. 

This last observation begs the question: Why invest all this (theo
retical and practical) effort in RNNs rather than these more powerful and 
widely-used models? Our emphasis throughout this work has been on 
the propagation of representations, updated as they travel from left to 
right through a sentence or series of sentences to reflect changes affor
ded by the events described in those sentences. Models such as BERT and 
ELMo are bidirectional – they simultaneously apply left and right 
context to the processing of each word, and it is not possible to assess 
their performance on left-to-right word-by-word incremental changes in 
representation without fundamentally deviating from how they are 
trained. Whereas left-to-right incremental processing is a given for 
human speech processing, NLP models operating over text (and even 
over speech) have the luxury during training (and after) of not being 
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limited to left-to-right incrementation. Study 3, for example, is beyond 
the reach of BERT and ELMo because, except for the very final instan
tiation of “the sheep” at the end of the third sentence, the representation 
of each word is given by both its left and right context. These are not 
models of incremental processing. GPT-2 does permit incremental 
representational propagation and updating. However, we observed 
earlier that as representations propagate forward through and across 
sentences, they change with each incremental step – representations are 
not put into a metaphorical box where they remain unchanged until 
retrieved some time later. GPT-2 would need to learn the dynamic that 
causes such continuous change – it is not built into the architecture of 
GPT-2 as it is in the architecture of an RNN. That is, the use of attention 
in GPT-2 affords the model the ability to query past time steps while 
ignoring intervening words (and representations). This may be a key 
distinguishing feature between models such as GPT-2 and recurrent 
architectures when applied to the task of modeling incremental left-to- 
right processing, language acquisition, or even human memory. And 
while GPT-2 has met with considerable success in respect of modeling 
prediction, and its neural correlates, during human sentence processing 
(e.g. Goldstein et al., 2020; Heilbron, Armeni, Schoffelen, Hagoort, & de 
Lange, 2020) such studies do not (yet) track the representational content 
that changes in lockstep with the unfolding language and that underpins 
those behaviors. This is a further reason to understand better the nature 
of the brain’s own propagation dynamics (c.f. Study 3 above). 

With respect to the representations that our RNNs propagated for
wards in time, we cannot with any certainty claim that these were object 
tokens, although their behavior (probed in representational space using 
similarity) suggests that, functionally at least, they were doing some
thing close. But how close? Elman’s SRNs (Elman, 1993) operationalized 
tokenization as the distinction between different exemplars of the same 
lexical item occurring at different positions in a sentence (as in e.g. 
“boyswho boyschase chaseboy”). The trajectory associated with each 
instantiation constrained the network’s prediction of which words might 
plausibly come next. In his examples, lexical items were grounded in an 
interaction between their contexts across time and the (emergent) rep
resentations activated at each point of that time. In essence, each token 
lexical item was distinguished from each other on the basis of its unique 
trajectory through the network’s hidden state space (see Altmann & 
Ekves, 2019, for further discussion of tokenization). The onion in our 
examples propagated forwards from one sentence to another in a 
different representational form depending on the subject and verb with 
which it was associated in the first sentence (and, in Study 2, modulated 
by whether the onion being referred to in that second sentence was 
marked as the version after the chopping or before). That is, the onion 
had a trajectory across time that encoded both the specific, dynamically 
changing contexts in which it had occurred (c.f. episodic memory) and 
the different regions of semantic space associated with those contexts 
and its own representational affordances (c.f. semantic memory). And 
just as we cannot “see” in a human brain distinct representations for 
distinct token objects, so we cannot see them in the RNN – we are forced 
in both cases to infer their existence from analyses of these systems’ 
behaviors in different contexts. We do not know whether the RNN in
dividuates representations as tokens that accrue attributes (with each 
successive experience of the token) that are bound to that “specific” 
token (e.g. that specific onion as unique from all others), or whether it 
experiences each instance of a token as unique, with each attribute 
modifying that instance without a commitment to all instances of the 
token having the same identity. It may be impossible to distinguish 
between these two possibilities, in networks and indeed, even in humans 
(for discussion of the continuity of representational existence of tokens 
across discontinuities in perceptual experience, see Altmann & Ekves, 
2019). To the extent that the RNN encodes objects as trajectories, and to 
the extent that each trajectory is unique and has continuity of repre
sentational existence (through forward propagation), the manifestation 
of a word in a sentence is the manifestation of a token that, functionally, 
has a unique identity. 

4. Conclusions 

What have we learned from the studies we have reported here – that 
a “black box” that is relatively opaque to representational analysis can 
mimic human behavior (itself the behavior of a “black box”)? In fact, it is 
only opaque to a classical analysis that assumes bounded representa
tions that can be teased apart one from the other. It is only opaque to an 
analysis that assumes a combinatorial semantics predicated on discrete 
combinations of discrete elements. We would claim that the propagation 
of “representations” (in quotes to reflect their non-discrete realization 
within a dynamical system) within and across sentences in our RNNs is 
combinatorial semantics (perhaps not in the sense of mapping onto 
formal semantic structures, but certainly in the sense of driving, and 
predicting, behavior – c.f. Glenberg, 1997, and certainly in the sense of 
the dynamic combination of representations through time to create new 
representations that are more than just the conjunction of the original). 
Much further work is required to understand the nature of the semantic 
space that our networks acquired, and to understand how that space 
changed dynamically as each sentence we gave it unfolded through 
time. But the purpose of this first set of studies was to explore whether 
RNNs can encode even the most basic properties of event structure, and 
a prerequisite for that was to explore whether they could predict the 
same behaviors that indicate that we humans encode event structure. In 
demonstrating that RNNs can indeed do that (for an admittedly limited 
set of event-relevant behaviors), we have identified a need to further 
investigate human processing: For example, more recent testing of the 
Davis and van Schijndel (2020) networks found that for the contexts 
“Two knights were attacking a dragon” or “A knight and his squire were 
attacking a dragon” and the continuation “the dragon killed one of the 
knights”, the networks showed lower surprisal for a subsequent sentence 
starting “The knight tickled by..” when it was two knights than when it 
was a knight and his squire. The networks anticipated a particular 
structure rather than particular content (that is, even though the verb 
“tickled” is contextually anomalous, unlike “killed”, the networks still 
preferred the participle interpretation over the main verb interpreta
tion). In fact, Altmann and Steedman (1988; fn 5 p. 202) predicted that a 
relative clause modifier, regardless of content, should indeed be preferred 
in a two-referent context. And yet, to our knowledge this has never been 
tested – a prerequisite to evaluating the models’ performance on such 
cases (we also successfully modelled the influence of situational context 
on syntactic ambiguity resolution reported by Tyler & Marslen-Wilson, 
1977, using the exact same stimuli. But again, we were able to show 
that the models predicted the human behavior on the basis of structural 
(cataphoric) dependencies across clauses, and we do not know whether 
the reported human behaviors were similarly based on structural cues). 
And with respect to Study 3, we know of no study that has explicitly 
considered how the representation of the subject of a sentence (or the 
object, or any other discourse entity) propagates forward, moment-by- 
moment, into successive sentences that maintain discourse cohesion. 
We found that the less constraining the verb in that first sentence, the 
greater the integrity of the representation of the subject that propagated 
forward into successive sentences. We interpreted this result in terms of 
“network perturbation” – a kind of computational salience. The propa
gation dynamics we observed in that study may be a fundamental 
property of dynamical systems, or of the brain, or of both. Recent ad
vances in using RSA across time in neuroimaging (e.g. Choi et al., 2020) 
suggest that equivalent studies with human neuroimaging may be 
possible – allowing researchers to identify if equivalent patterns emerge 
in the brain, and where. 

The answer, therefore, to where this leaves us, is that, at worst, 
consideration of the event-representational abilities of RNNs has opened 
up novel avenues of research into the human mind that have not, 
hitherto, been considered. At best, we have a computational tool whose 
analysis may enable us to ground basic properties of event representa
tion in the dynamics of a computational machinery that acquires, en
codes, and deploys experiential knowledge across the senses, and which 
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most likely encodes events as the encoding of their consequences for how 
the language, or corresponding world, can unfold. Our claim in this 
respect is that the RNNs, once trained, are more than just a model of the 
language – the knowledge they encode is a product of the input and of 
the computational dynamics of the system. Those dynamics constrain 
the model to acquiring certain kinds of knowledge in certain kinds of 
ways, and they constrain the model to subsequently deploying that 
knowledge in particular ways. It is undoubtedly the case that these 
networks would, with further testing, fail more than they would suc
ceed. But their successes thus far suggest avenues of research, on 
representational content and its propagation, in the computational, 
behavioral and neuroscientific domains that in fact render the future 
success or failure of these particular networks moot. 

Dedication 

Thirty years ago, Jacques Mehler asked GTMA: What have we 
learned about sentence processing in the past 10 years? The provocation 
was explicit in his prosody, a domain of language that was foremost on 
his mind at that time, having moved away from sentence processing 
research some time before (at least 10 years before, one would assume 
from that prosody). But Jacques’ provocation was a method. It taught 
those of us around him to think, and to identify our passions, and to use 
those passions to create our science. Jacques was a mentor whose impact 
undoubtedly contributed to the collaboration that led to the current 
work. He is missed. GTMA, October 2020. 
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