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Abstract

Infants can discriminate between familiar and unfamiliar grammatical patterns expressed in a

vocabulary that is distinct from that used earlier during familiarization (Cognition 70(2) (1999) 109;

Science 283 (1999) 77). Various models have captured the data, although each required that discri-

mination be distinct, in terms of the computational process, from familiarization. This article

describes a simple recurrent network (SRN), equipped only with the assumption that it should predict

what comes next, which models the data without distinguishing between familiarization and discri-

mination. To accomplish this, the SRN requires pre-training on a range of sequences instantiating

different structures and different vocabulary items to those used subsequently during familiarization

and test. Pre-training enables the network to avoid replacing structure acquired during familiariza-

tion with structure experienced at test. An equivalent enabling condition may underpin infants’

resistance to catastrophic interference between the different structures and vocabulary items to

which they are exposed. q 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Marcus, Vijayan, Bandi Rao, and Vishton (1999) described a study in which 7-month-

old infants were familiarized with sequences of syllables generated by an artificial gram-

mar; the infants were then able to discriminate between sequences generated both by that

grammar and another, even though the sequences in the familiarization and test phases

were instantiated in different sets of syllables (cf. earlier work by Gomez & Gerken, 1999).

In one study, infants were familiarized either to sequences such as ‘ga ti ga’ (an ‘ABA’

pattern) or to sequences such as ‘ga ti ti’ (an ‘ABB’ pattern). In a subsequent test phase

containing both these patterns, infants attended more to whichever sequences did not obey
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the pattern to which they had previously been familiarized, despite the fact that the test

sequences were instantiated in a new set of syllables (e.g. ‘wo fe wo’ or ‘de ko ko’). Marcus

et al. claimed that such behaviours were beyond the capabilities of certain kinds of

statistical learning mechanisms. This last claim provoked various demonstrations that

neural networks could model the infant behaviour. However, each such demonstration

had its shortcomings. Thus, Christiansen and Curtin (1999) switched off learning during

the test phase, but failed to establish that the information that was required to distinguish

between the ABA and ABB test patterns would be maintained if learning were not

switched off (cf. catastrophic forgetting – see below). Seidenberg and Elman (1999)

first trained their network to explicitly recognize whether a syllable in a sequence was

the same as the preceding one. Subsequently, the network was trained to categorize ABA

and ABB sequences as belonging to one pattern or the other, and at test, the network

correctly assigned the right pattern to each sequence. However, the training regime here

was quite different to that employed in the Marcus et al. study. Gasser and Colunga (1999)

explicitly coded whether one word in a sequence was the same as or different to another,

whilst the Shultz (1999) and Shastri (1999) models required the explicit coding of position

(e.g. ‘word 1’, ‘word 2’). In each case assumptions had to be made in respect of the

models’ coding of the input (cf. also Negishi, 1999). The Altmann and Dienes (1999)

model, and its shortcomings, are described below.

This article describes a new method for training a neural network which enables the

modelling of the Marcus et al. (1999) data. No network parameters need be changed

between familiarization and test (learning is never switched off), no special assumptions

need be made regarding the coding of the input, and no explicit ‘teacher’ is required. The

manner in which the model succeeds sheds light on various principles that underlie

learning in neural networks which, if they generalize to human learning, have significant

implications for the manner in which infants learn new sentence structures without

unlearning old ones.

2. Background to the model

Altmann and Dienes (1999) modelled the Marcus et al. (1999) data using a simple

recurrent network (SRN) (Elman, 1990). The input and output units encoded a localist

representation of the eight syllables used by Marcus et al. for the familiarization phase, the

eight (different) syllables they used for the test phase, and two (largely redundant) markers

for the beginning and end of each sequence. These input units fed into a recoding layer (20

units) which in turn fed into a further hidden layer (25 units) – the recurrent layer – whose

output proceeded both to the networks’ output layer (with the same number of units as the

input layer) and to a set of copy units which fed back into this layer.

The model was trained on sequences from either the ABA or ABB grammar, and after

each input the network had to predict the identity of the next input. At test, the network

was presented with sequences drawn from both grammars but instantiated in a different set

of syllables. Its task was again to predict what the next input would be. This time, the

weights on the connections leading to the recurrent layer were ‘frozen’; the back-propaga-

tion algorithm could only, therefore, change weights on the connections between the input
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and recoding layer, and between the recurrent and output layer (cf. Dienes, Altmann, &

Gao, 1999). The model better learned sequences drawn from the familiar grammar than

from the other grammar.

This result is unsurprising; given that the recurrent layer encodes ‘structure in time’, the

weights on connections to and from this layer encoded the sequential structure of which-

ever grammar the network had previously been trained on. The connection strengths

between the input and recoding layer (and the recurrent and output layer) encoded the

mapping of syllables onto this structure. By freezing the connections into the recurrent

layer, the grammar that was acquired during the familiarization phase was ‘fixed’, and the

network therefore had to learn only the mapping of the new vocabulary onto this grammar.

If an input sequence obeyed the grammar, a mapping would be possible and the appro-

priate predictions made. If an input did not obey the grammar, the task of predicting the

next element in a sequence would be hindered by the requirement to map each sequence

onto an underlying internal representation which did not accord with the pattern under-

lying the sequence.

There were two reasons for freezing the connections into the recurrent layer: first, it

forced each network to map the test sequences onto whatever internal representation of

sequential structure had been formed during the familiarization phase; and second, it

ensured that the novel test patterns (which had not been presented in the familiarization

phase) did not cause the networks to unlearn the earlier grammar and replace it with new

structure (cf. French, 1999; McCloskey & Cohen, 1989). Freezing would not be required if

the network could somehow partition its internal representational space in a way that was

resistant to the ‘unlearning’ that normally results when a previously trained network is

given novel stimuli to learn. This could be achieved, in principle, by densely populating

that space so that any new representations that are formed by the network would integrate

with existing, previously entrenched, representations. These new representations, encoded

amongst the older ones, would not be so easily changed by further novel stimuli. And

populating the space would better simulate the state of the infants’ knowledge when they

enter the experiment (cf. McRae & Hetherington, 1993).

To test the effects of a more constrained representational space, the Altmann and Dienes

(1999) simulations were repeated with two changes: first, the networks were all pre-trained

on an arbitrary grammar and associated vocabulary; and second, no connection weights

were frozen – the same network parameters were used during familiarization and test.

3. The simulations

Sixteen neural networks based on the architecture described above were trained on the

252 different sentences generated by the grammar and vocabulary used in Elman (1990)1;

each was assigned a different random initialization of connection weights. Ten thousand

sentences (approximately 40 repetitions of each sentence) were presented to each network

six times (cf. Elman, 1990). The 29 vocabulary items were encoded across 29 input units.
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Learning rate and momentum were set at 0.2 and 0.01, respectively. After this pre-training

phase, the 16 networks (corresponding to the 16 infants in the Marcus et al. (1999) study)

were divided into two groups; one was trained on the 48 ABA sequences used in the

Marcus et al. study (comprising three repetitions of 16 different sequences), and the other

was trained on the 48 ABB sequences. This familiarization phase was repeated for 50

epochs (cf. Altmann & Dienes, 1999). The ABA and ABB sequences required a vocabu-

lary of eight items, encoded across eight further input units. In the final (test) phase, each

network was given a different random ordering of 12 sequences – six ABA sequences and

six ABB sequences. Each test sequence was expressed in a new set of eight vocabulary

items, encoded across another set of eight input units. The number of sequences in the

familiarization and test phases, as well as the number of vocabulary items making up those

sequences, matched those of the Marcus et al. study. At test, the network iterated around

the first test sequence 20 times; on the final iteration its prediction for what should occur

after ‘AB’ (either B or A) was compared against what did occur in that final position; then,

the network moved to the next test sequence, iterated around that 20 times, and so on (see

Dienes et al., 1999, for discussion). The intention was to see how well the network would

learn a test pattern as a function of which grammar it had been previously exposed to.

3.1. Results and discussion

To measure the accuracy of the networks’ predictions, the product moment correlation

was calculated between the output vector corresponding to the network’s prediction on the

last iteration, and the vector corresponding to what the network should have predicted.

These correlations were averaged across the six ABA test patterns and the six ABB test

patterns, and were then submitted to an analysis of variance with networks as a random

variable and the factors Training (ABA or ABB) and Test (ABA or ABB). There were

neither effects of Training nor Test (both F , 1) but there was a significant interaction

between the two, with a higher correlation for sequences congruent with the previously

trained grammar than for sequences that were incongruent (0.91 vs. 0.87: Fð1; 14Þ ¼ 15:4,

P , 0:002). Planned comparisons confirmed that the networks were better on ABA

patterns after ABA familiarization, and ABB patterns after ABB familiarization (both

P , 0:05).

The networks thus discriminated between the test patterns as a function of whichever

grammar they had previously been trained on. But to what extent did this require pre-

training on the Elman sentences? To address this, new simulations were run but without

pre-training: There was no effect of Training (F , 1), but there was a significant effect of

Test (Fð1; 14Þ ¼ 25:8, P ¼ 0:0002), with better learning of the ABB patterns than the

ABA patterns (0.94 vs. 0.88) – adjacent repetitions are generally easier to learn in an

SRN than longer distance ones. There was no interaction between Training and Test

(F , 1). Evidently, pre-training was required in that first simulation.

One possible confound in that first simulation was that some of the sequences used for

pre-training had an underlying ABA structure (e.g. ‘boy chase boy’). To ensure that these

sequences were not responsible for the result, the first simulation was repeated with a new

pre-training set that did not contain such sequences. As before, there were neither main

effects of training pattern (Fð1; 14Þ ¼ 2:44, P . 0:1) nor test pattern (F , 1), but congru-
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ent items were better learned than incongruent items (0.91 vs. 0.88; Fð1; 14Þ ¼ 14:47,

P , 0:002). Planned comparisons confirmed the effect of congruency after both ABA and

ABB familiarization (both P , 0:05).

4. General discussion

Pre-training on the Elman sequences enabled better learning of ABA patterns after ABA

familiarization, and of ABB patterns after ABB familiarization. The vocabularies to which

each network was exposed were different at each phase, suggesting that the networks had

abstracted something about the underlying ABA and ABB patterns in the familiarization

phase, and had used this abstract representation to aid (or hinder) learning in the final

phase.2 What remains to be explained is why pre-training should have had this effect.

One possibility is that pre-training causes the network to lay down structure in the

representational space that becomes particularly well entrenched on account of the diver-

sity of the stimuli and the amount of learning. This diversity causes the representational

space to become relatively densely populated (with representations of the different depen-

dencies that can be abstracted across the stimuli); any new structure that is learned

subsequently must be encoded amongst these existing, entrenched, structures. The new

structure therefore inherits the entrenchment of the previously learned structure through

being represented, in part, within those previously learned structures.

An alternative is that the beneficial consequences of pre-training arise from the sigmoid

activation function which converts a unit’s net input into its net output. If the weights on

the input connections are relatively large, changes to those weights will have relatively

little effect on the net output of that unit. Consequently, for units with large net inputs, the

error term that is calculated by the back-propagation algorithm will be small and the

weight adjustments correspondingly so. Thus, the output activations of units with large

net inputs will not change as a function of learning as much as the output activations of

units with small net inputs. Pre-training may simply push the weights towards larger

values, and so make the network less sensitive to weight changes and less prone, therefore,

to unlearning. To explore this, a simulation was run in which, after pre-training, the

weights were randomly re-assigned within the network, thereby breaking up any encoded

structure (connections to the copy units were left intact). If the benefit of pre-training is

due to the encoding (and entrenchment) of structure, the effect of congruency should be
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simulations reported in the main text, the only bias at test was to better predict the final element of ABB patterns

after ABB familiarization, and the final element of ABA patterns after ABA familiarization. More generally, a

recurrent network of the kind used here can no more easily learn that an element at time 1 predicts an identical

element at time 2 than it can learn that an element at time 1 predicts a different (but determinate) element at time 2

(and see Marcus et al., 1999, note 20, for discussion of neural networks’ insensitivity to reduplication).



eliminated by this manipulation. In the event, the effect was indeed eliminated

(Fð1; 14Þ ¼ 1:2, P . 0:2), with only an effect of Test pattern (Fð1; 14Þ ¼ 9:2, P , 0:01).3

One further issue concerns the nature of the pre-encoded structure – given the distinc-

tion between sequential structure on the one hand, and knowledge of a vocabulary on the

other, what would be the result of pre-training the network on scrambled sequences?

Vocabulary information (including frequency) would be maintained, but the constraints

on sequential structure would be broken. Repeating the simulations using a pre-training set

in which each sentence was scrambled revealed an interaction between training and test

pattern (Fð1; 14Þ ¼ 6:2, P , 0:03), an effect of test pattern (Fð1; 14Þ ¼ 16:1, P , 0:002),4

and no effect of training pattern (Fð1; 14Þ ¼ 1:4, P . 0:2). However, planned comparisons

revealed an effect of congruency only after ABB training, not after ABA training (cf. note

3). Thus, pre-learning a vocabulary alone is only partially effective; pre-learning sequen-

tial structure in addition to that vocabulary has a more reliable effect in respect of enabling

the sought-after sensitivity.

Taken together, these results suggest that only pre-training on sequentially structured

input permits a reliable effect of congruency to emerge in the absence of any other biases;

a quite different behaviour emerges following the break-up of the structures that are laid

down during the familiarization phase, or following pre-training on input that does not

contain regular sequential structure.

Finally, Dienes et al. (1999) demonstrated across a range of different grammars, albeit

with freezing, that a network which is exposed to a grammar expressed in one vocabulary

and is then exposed to that same grammar expressed in another vocabulary can learn to

map items from one vocabulary onto corresponding items from the other; thus, an appro-

priately sensitive statistical learning mechanism can induce the appropriate mappings

across vocabularies in these cases (see Tunney & Altmann, 2001, for discussion). Hier-

archical clustering of the activation patterns across the encoding and recurrent layers

suggested an equivalent behaviour here – the networks clustered like-with-like; for exam-

ple, each element in the familiarization sequence ‘ga ti ga’ clustered with the correspond-

ing element from the test sequence ‘wo fe wo’. In effect, the network ‘recognized’ the

underlying equivalence between the sequences. Further research is needed to explore the

generalizability of these results to more complex grammars, in learning mechanisms such

as the SRN described here, and in learning mechanisms such as the infants described by

Marcus et al. (1999).

5. Conclusions

Newly learned dependencies can be made relatively more resistant to unlearning if the
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network has already encoded a sufficient number and variety of other dependencies. A

similar result has been observed for simple two-layer feed-forward networks (McRae &

Hetherington, 1993), although the present observation is significant in that such networks

neither encode structure in time nor do they encode abstract knowledge across connections

between hidden layers.

The observation that newly acquired knowledge can be more stable if a network has

already learned some other body of knowledge has implications for the manner in which

human learning proceeds. When acquiring a grammar, infants are exposed to a wide range

of novel sentences using novel vocabulary items. Somehow, hearing new sentences and

new words does not cause the infant to catastrophically unlearn syntactic dependencies he

or she has learned previously. Perhaps this is because the infant already has a core body of

knowledge (not necessarily language specific) which enables novel mental representations

to become relatively stable in the face of novel vocabulary items and novel structures.

Without a sufficient body of pre-existing knowledge, newly learned structures, and newly

learned mappings between novel words and those structures, might cause earlier structures

and earlier mappings to be unlearned. And just as ‘starting dense’ – acquiring novel

structure within a representational system that is already densely populated – has proved

critical in enabling successful simulation of data on infant grammar learning, perhaps an

equivalent principle underpins infants’ resistance to catastrophic interference between the

different structures to which they are exposed. The present research adds to the body of

evidence which suggests that models of statistical learning can provide insights into the

nature of the conditions that enable certain kinds of learning (cf. Elman, 1993; Elman et

al., 1996).
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